Part Number Hot Search : 
C1003C H22LTI FLI7512 11405442 67785H 10101 1346742 00AXI
Product Description
Full Text Search
 

To Download AUIRFS8409-7TRR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ 
 
    
 
      
 
 
    !
" 
 #" $  %
&   " 

  
$"

'#(   % )
 *&
! #"  $ # 
+$, 
- 
   &" ,
  
,
$ # 
"" )

*./%. 
0&%.
$1 

 
"  
 2$ 

  ( # 
 
 
"
 
 3
 
, $  ,

 


 !
'$ 
" 
 #" $ )
, 
" 

#"  
" 

3
  , $ 
 #4

#5

" $

( # 
,, 
 4
 
,
$

$ # 


  
,
 "" 3 applications  .  

& 
6. &7  8 
&  & 9& "
0
*4   * 
   &0 & s d g gds gate drain source                   
                    !"        #  $      $                         $     ! %   & &     $     $$      !"        '                   !     ("  )*+,-.    '  $ !     
  
     ordering information base part number package type standard pack complete part number form quantity auirfs8409-7p d 2 pak 7 pin tube 50 auirfs8409-7p tape and reel left 800 auirfs8409-7trl tape and reel right 800 AUIRFS8409-7TRR v dss 40v r ds(on) typ. 0.55m max. 0.75m i d (silicon limited) 522a i d (package limited) 240a symbol par ameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r  ??? 0.4 c/w r ja junction-to-ambient (pcb mount)  ??? 40 a 300 -55 to + 175 20 2.5 max. 522  369  1200  240 mj 764 see fig. 14, 15, 24a, 24b 375 1485 c
    
  
     
   -      ' /       !0 '   *12      !3         $     $      '           !( $  3&4412)         # '  !/       !  5 "  .   "  6*+,-.562!4+78.  6+2 . 9 
 6422.:
642:!      $      !  9
422.;  4127;<.: : 
."  4+,-! s d g   '  122<#  *=!  -   $$!(")$              -  ' :
   $ 2 >2=:
!  -   $$!(%)$            -  ' :
   $ 2 >2=:
! ?   4@a -0(b&1 c&42 )! b    $        a   $      d3&ee1!
     "    e2,-!            ! static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v . 0.0 0. 0. v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current ??? ??? 1.0 ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.2 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 176 ??? ??? s q g total gate charge ??? 305 460 q gs gate-to-source charge ??? 84 ??? q gd gate-to-drain ("miller") charge ??? 96 ??? q sync total gate charge sync. (q g - q gd ) ??? 209 ??? t d(on) turn-on delay time ??? 32 ??? t r rise time ??? 148 ??? t d(off) turn-off delay time ??? 149 ??? t f fall time ??? 107 ??? c is s input capacitance ??? 13975 ??? c oss output capacitance ??? 2140 ??? c rss reverse transfer capacitance ??? 1438 ??? c oss eff. (er) effective output capacitance (energy related) ??? 2620 ??? c oss eff. (tr) effective output capacitance (time related) ??? 3306 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode) v sd diode forward voltage ??? 0.8 1.2 v dv/dt peak diode recovery  ??? 1.6 ??? v/ns t rr reverse recovery time ??? 50 ??? t j = 25c v r = 34v, ???58??? t j = 125c i f = 100a q rr reverse recovery charge ??? 59 ??? t j = 25c di/dt = 100a/ s  ???72??? t j = 125c i rrm reverse recovery current ??? 2.2 ??? a t j = 25c t j = 175c, i s = 100a, v ds = 40v ns nc a ??? ??? ??? ??? 522  1200  a na nc ns pf conditions v ds = 10v, i d = 100a i d = 100a v gs = 20v v gs = -20v v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v,v ds =0v to 32v  , see fig. 11 i d = 100a r g = 2.7 10  conditions v gs = 0v, i d = 250 a reference to 25c, i d = 2ma v gs = 10v, i d = 100a  v ds = v gs , i d = 250 a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v ds =20v v dd = 20v i d = 100a, v ds =0v, v gs = 10v t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. v gs = 0v, v ds = 0v to 32v  mosfet symbol showing the conditions v gs = 10v 
    
  
     
 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.4 0.8 1.2 1.6 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 1000000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 200 250 300 350 400 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a
    
  
     
 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package -60 -20 20 60 100 140 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 2.0ma -5 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 2500 3000 3500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 26a 52a bottom 100a 25 50 75 100 125 150 175 t c , case temperature (c) 0 100 200 300 400 500 600 i d , d r a i n c u r r e n t ( a ) limited by package
    
  
     
 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15 (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 24a, 24b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 0.05 duty cycle = single pulse 0.10 0.01
    
  
     
    
 !"#  $# fig 17. threshold voltage vs. temperature    %
# &'"#  $#    
 !"#  $#    %
# &'"#  $# fig 16. on-resistance vs. gate voltage 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 1.0 2.0 3.0 4.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c -75 -25 25 75 125 175 225 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 250 a id = 1.0ma id = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 16 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 100 200 300 400 500 600 700 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 2 4 6 8 10 12 14 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 50 100 150 200 250 300 350 400 450 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c
 (   
  
     
 fig 22. typical on-resistance vs. drain current 0 100 200 300 400 500 i d , drain current (a) 0.0 2.0 4.0 6.0 8.0 10.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) vgs = 5.5v vgs = 6.0v vgs = 7.0v vgs = 8.0v vgs = 10v
 )   
  
     
 fig 25a. switching time test circuit fig 25b. switching time waveforms fig 24b. unclamped inductive waveforms fig 24a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 26a. gate charge test circuit fig 26b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 23. *+,
#
#$#"  ! for n-channel hexfet   power mosfets  ? 
  ?    ? !"  #$ p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period - :
6+:$ 55    - + - + + + - - -     : ? %& '  ? %( )*)#) ?    ' +, , ? )*)#)- %*#

  d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f :
 ./ 1 0 + 0.1 %  :
 !f!"! 42: + - : :

 .   
  
     
 d 2 pak - 7 pin package outline dimensions are shown in millimeters (inches)  
         
    
    
  
     
 d 2 pak - 7 pin tape and reel  
         
     d 2 pak - 7 pin part marking information 
  ,
# /0/ 1101
+1+ 0!

2#3 *4! 5 2
'
2

#
    
  
     
 6 7! 
"##" 5
!#
 8"5"9&$$
$ 66:; 
"<=
: 7 >! "
#&>! 

 qualification information ? d 2 pak - 7 pin msl1 rohs compliant yes esd machine model class m4 (+/- 600) ?? aec-q101-002 human body model class h3a (+/- 6000) ?? aec-q101-001 charged device model class c5 (+/- 2000) ?? aec-q101-005 qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level.
    
  
     
  
 ?"""  #"'#
&!

 +
 


#""!5"#"<="  &  '&
 +
 
"
# 
"&  " 
 "#
& &'"
"
#! "#" "  #
#"
!
#! 
" "&
!
 *! 5"#"'#&&@?a;

!

 #!"#$
 !"
"  >! "&'#"

#! #"
! #
"" &'
 
 
#! ""
#"!5b 
8" "#
#
"
""!#& 

# +
#'  "
  
"&#
#! "
&"  
" 5& 
"
# &8" "##"'#
&>!

 &>!"!"#
&;# " ""
"!
&" :; & ##5'
 >! ""'
 "
 &
#! "
 "" 
 # ""! "
5
 
"""" 
 !"

#! #"' !"
""
"5
&
#! " # 
"!"'

"
  c&"+"& !"

#! "# 
" !"
""&
!# 
##>!#"'#
'"'!#" 
#! 


 
#5
+"
#"&"" ""5

#! 
"&
!
#" 
#5""
#"
#
" 
"#
 "
#! 

&"
 
&
" "!## 5!"""  "
"
"5
5
"! &##
! 

 

 &# " 5"!5b 
##
" 
" "

#! "
" #&" "#

5
#& ""#5
&
#! 
"   
#";""# #"
&""
#
#! 
" #"!## 5!"""   "
"
"5
5
"! &" " 
#! "
#"'###
!&
c#
!""

""" "##
"!'  
& 5
#

& 
"##
"!

"!"

& 
& &&!
& 
#! 
!# "!
&"
b!
#& 
!%&
!#d!! &"
!"
#! "
"! & !##
!!&
c# 
d!"&# #&
#
 #"
 " 
" "!5"#""##"5!
"& ""'"  "
""# '"#;""#"
5
 ""'
!
# 
#   
"
b!
#&""
#&"! &!##
!!&
 c# !""! &  '"&"'''#'&#"'
 ! !
&
#!  e
#! " #" '#5&,"2
'" "' <,2=
&?%, 
,"#"'# # ! !#
 ,2 "  
">!#5  
" 

& 
"d!"  +
#'#'&!"

#! "
 #5,2" '# 
">!' ' # 
#! """
&d!8"
"+#&&"
"
"5

 &'#'!
 >! "
 
&"! &!" 
#! "&#"'#
##
!"!

 
"

 "!""&"  
#!  " #"'#5"
&%e$%..>! "#5! 5 !#'&#"'
@?a d!" +
#'#'&&!"
#"'#
#! "!

 
"
5 "
"5
!
 "! &>! " 3
 & "!
"
 8" & """   &9$$
$ & 
$  !" #$%"&'  4%!#d#:%'!#
 
.  9< =  ( 


▲Up To Search▲   

 
Price & Availability of AUIRFS8409-7TRR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X